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Abstract.  The Disjunctive Kriging formalism has been implemented for a number of tasks in geostatistics. Despite the advantages of this formalism, application has been hindered by complex presentations and the lack of simple code. This poster presentation will go through the steps to perform Disjunctive Kriging in a simple case. The global stationary distribution of the variable under consideration is fit by Hermite polynomials. The coefficients of this polynomial expansion fully define the relationship between the original values and their normal score transforms. Disjunctive Kriging amounts to using simple kriging to estimate the polynomial values at unsampled locations. The estimate is built by linearly combining the estimated polynomial values, weighted by the coefficients of fitting of the global distribution. These estimated values completely define the local distribution of uncertainty. It is straightforward to implement this formalism in computer code; this paper attempts to provide a clear exposition of the theoretical details for confident application and future development.

1 Introduction

Disjunctive Kriging (DK) has been available for more than 25 years; however the seemingly complex theory makes it unappealing for most practitioners. DK is a technique that provides advantages in many applications. It can be used to estimate the value of any function of the variable of interest, making it useful to assess truncated statistics for recoverable reserves. DK provides a solution space larger than the conventional kriging techniques that only rely on linear combinations of the data. DK is more practical than the conditional expectation, since it only requires knowledge of the bivariate law, instead of the full multivariate probability law of the data locations and location being estimated (Maréchal, 1976; Matheron, 1973, 1976a, 1976b; Rivoirard, 1994). The theoretical basis of DK is sound, internally consistent, and has been extensively developed and expanded, among geostatisticians (Armstrong and Matheron, 1986; Emery, 2002; Maréchal, 1984; Matheron, 1974, 1984). In practice, those developments have not been applied to their full potential. DK has been applied mainly with the use of Hermite polynomials and the bivariate Gaussian assumption (Guibal and Remacre, 1984; Webster and Oliver, 1989). Still, relatively few practitioners have mastered DK. The discomfort of many practitioners is due in part to the difficult literature focussed on theory rather than applications. This work aims to present DK in a rigorous manner, with greater focus on its practical aspects.

We start by presenting some background on Hermite polynomials, the bivariate Gaussian assumption, and then introduce DK and its implementation steps. More extensive theory can be found in Chilès and Delfiner (1999) and Rivoirard (1987).
2 Hermite Polynomials 
Before getting into DK, we need to define and review some of the properties of Hermite polynomials. This family of polynomials is important because it will help us parameterize conditional distributions later on. Hermite polynomials are defined by Rodrigues' formula:
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where 
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 is the degree of the polynomial, 
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, can easily be calculated. A recursive expression, useful for computer implementation, exists to calculate polynomials of higher orders:
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These polynomials have the following properties: (1) Their means are 0, except for the polynomial of degree 0, which has a mean of 1; (2) Their variances are 1, except again for the polynomial of order 0 which is constant and therefore its variance is 0; and (3) the covariance between 
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. This property is known as orthogonality and can be understood in the same manner as the factors and principal components in multivariate statistical analysis; they correspond to uncorrelated components of a function of 
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. A covariance of zero is sufficient for full independence if the multivariate distribution is Gaussian.

Hermite polynomials form an orthonormal basis with respect to the standard normal distribution, other polynomials families can be considered if a different transformation of the original variable is performed (Chilès and Delfiner, 1999).
2.1 BIVARIATE GAUSSIAN ASSUMPTION
Consider the variable 
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 distributed in space. We can define the random function model 
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 is a location vector in the three-dimensional space. Taking a pair of random variables 
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Notice that these two terms, the mean vector and variance-covariance matrix, fully define the bivariate Gaussian distribution of 
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. The correlogram 
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 gives all the structural information of the bivariate relationship. 

Under this assumption, one additional property of Hermite polynomials is of interest. The covariance between polynomials of different order is always 0, and if the order is the same, it identifies the correlation raised to the polynomial's degree power, that is:
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The only term that is left is the covariance between polynomial values of the same degree for locations separated by a vector 
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, this spatial correlation tends rapidly to zero as the power 
[image: image30.wmf]n

 increases, that is, the structure tends to pure nugget.

2.2 FITTING A FUNCTION WITH HERMITE POLYNOMIALS
Any function with finite variance can be fitted by an infinite expansion of Hermite polynomials. The idea is to express the function of 
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 as an infinite sum of weighted polynomial values: 
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The only question that remains is how to find the coefficients 
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. This can be done by calculating the expected value of the product of the function and the polynomial of degree 
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The expected value can be taken inside the summation, since it is a linear operator and the coefficients 
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 are constants. Notice that the expected value of the product of polynomials of different degrees corresponds to their covariance. The property of orthogonality comes in so that all terms where 
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. In this case, the covariance becomes the variance that equals 1. We then obtain the expression for the coefficient 
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. It is worth noting that the coefficient of 0 degree corresponds to the mean of the function of the random variable. 

The practical implementation of this expansion calls for some simplifications: the infinite expansion is truncated at a given degree 
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. The truncation causes some minor problems, such as generating values outside the range of the data. These values can simply be reset to a minimum or maximum value. If the number of polynomials used is large enough, these problems are of limited impact.

3 Disjunctive Kriging

Disjunctive Kriging (DK) allows the estimation of any function of 
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, based on a bivariate probability model. A bivariate Gaussian distribution of the normal scores of the data is almost always chosen. DK provides the solution that minimizes the estimation variance among all linear combinations of functions of one point at a time.

In simple words, DK relies on the decomposition of the variable (or a function of it) into a sum of factors. These factors are orthogonal random variables, uncorrelated with each other, and therefore the optimum estimate can be found by simple kriging each component. Consider a random variable 
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and a transformed random variable 
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, in general its Gaussian transform. The disjunctive kriging estimate finds the family of functions of 
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 that minimizes the estimation variance. Under a particular bivariate assumption, an isofactorial family of functions can be found. Under the bivariate Gaussian assumption, this family is the Hermite polynomials. However, other transformations can be done and different orthogonal polynomials must be used. They are called isofactorial families because they decompose the function of the random variable into factors that are independent. Although in the general case the DK estimate is obtained by simple cokriging of the functions of different order, if these are independent from each other, just a simple kriging of the functions of the same order and their posterior linear combination suffices to obtain the best estimate.

The DK estimate is presented next under the bivariate Gaussian assumption using Hermite polynomials:
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The expansion is generally truncated at a degree 
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, usually under 100. To calculate the DK estimate, the normal score transformation of the data is necessary: Then, the spatial covariance of the transformed variable 
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 is calculated and modelled (it is the correlogram, since it has unit variance). The Hermite polynomials are computed for all the transformed data up to a degree 
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. Finally, the coefficients of the Hermitian expansion can be calculated. Simple kriging is performed 
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 times. The estimate of the Hermite polynomial at an unsampled location 
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 is calculated as:
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where 
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 is the simple kriging weight for the data 
[image: image53.wmf])

(

i

y

u

 and the degree 
[image: image54.wmf]p

; 
[image: image55.wmf])

(

0

u

n

 is the number of samples found in the search neighborhood used for kriging. Notice that the term for the mean is not present, since the mean value of the Hermite polynomial is 0, for all 
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. Also, note that the SK estimate for the polynomial of degree 0 is 1.

The weights are obtained by solving the following system of equations:
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We can now rewrite the DK estimate as:
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4 Implementing DK

Implementation of disjunctive kriging requires the following steps and considerations:

1. The original data 
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2. The Hermite polynomials of each data are calculated up to a degree 
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3. The coefficients 
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 are calculated. Notice that the function 
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, or it may be a more complex function of 
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. The coefficients are calculated as a discrete sum. For example, if the function is the inverse transformation to normal scores, then:
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If the function is the probability for the node to be below a threshold, that is, its indicator function, then:
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The coefficients can be calculated in the same manner for any function of  
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.

4. The variogram of normal scores must be calculated and modelled. This provides us with the correlogram, which fully define the spatial continuity for polynomials of different degree.
5. At every location to be estimated, 
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 simple kriging systems are solved, one for each degree of the polynomials, using the covariance (correlation) function modelled for the normal scores raised to the power 
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 of the degree of the polynomial being estimated. These systems provide a set of estimated Hermite polynomials for the unsampled location, which are then linearly combined using the coefficients calculated in Step 3:
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5 Conclusions

This paper and the associated poster present the methodology to estimate the value of a regionalized variable at an unsampled location by Disjunctive Kriging, under the bivariate Gaussian assumption. The use of the Hermite polynomials as an isofactorial family was discussed and the most fundamental equations were presented. The methodology presented here could be extended to other transformations using different isofactorial families. 
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